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Interested in 5G?

• Sparse and Low-Rank Optimization for Dense 
Wireless Networks
– Tutorial at IEEE GLOBECOM 2017

• Tractable Analysis of Large-scale Multi-antenna 
Wireless Networks via Stochastic Geometry
– Tutorial at WiOpt 2018

• Hybrid Beamforming for 5G Millimeter Wave 
Systems
– Tutorial at IEEE GLOBECOM 2018
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Edge AI

• Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief, “A survey on mobile edge computing: The 
communication perspective,” IEEE Commun. Surveys Tuts., vol. 19, no. 4, pp. 2322-2358, 4th 
Quart. 2017.

• G. Zhu, D. Liu, Y. Du, C. You, J. Zhang, and K. Huang, “Towards an intelligent edge: Wireless 
communication meets machine learning,” submitted to IEEE Communications Magazine.

• J. Zhang, and K. B. Letaief, “Mobile Edge Intelligence and Computing for the Internet of 
Vehicles,” submitted to Proc. IEEE.
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Big Data Analytics – Cache Management

Cache is limited – What to cache?
 Y. Yu, W. Wang, J. Zhang, and K. B. Letaief, “LRC: Dependency-aware 

cache management in data analytics clusters,” in Proc. IEEE 
INFOCOM 2017. (Acceptance Rate: 20.93%)

Cache is shared resource – How to fairly share 
cache among users?
 Y. Yu, W. Wang, J. Zhang, Q. Weng, and K. B. Letaief, “OpuS: Fair and 

efficient cache sharing for in-memory data analytics,” in ICDCS 
2018. (Acceptance Rate: 20%)

Distributed caches – How to balance the load?
 Y. Yu, R. Huang, W. Wang, J. Zhang, and K. B. Letaief, “SP-Cache: 

Load-balanced, Redundancy-free Cluster Caching with Selective 
Partition,” in SC 2018. (Acceptance Rate: 19%)

 Y. Yu, W. Wang, J. Zhang, and K. B. Letaief, “LACS: Load-aware cache 
sharing with isolation guarantee,” ICDCS 2019. (Acceptance Rate: 
19.6%)
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Outline
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Deep learning for wireless communications

The unreasonable effectiveness of “learn to optimize”

IGCNet – Learning with network topology

LORM – Learning optimization policy 

Takeaway messages



Successes of Deep Learning
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The Hyper on Deep Learning
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Deep Learning: Alchemy or Science?
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When can deep learning help?

• When it is difficult to obtain good models
– Channel estimation in mmWave systems
– Traffic prediction, user mobility

• When there is a lack of design methodology, but abundant 
data
– Channel coding with feedback
– Joint source-channel coding

• When conventional methods work, but too complex
– Learn to optimize for resource management
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The focus of this talk



Unreasonable effectiveness of “learn to optimize”
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Supervised Learning with Neural Networks
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k-th layer’s output is the output of k-th layer
the learned parameters



Learning to Optimize (L2O)

• Use machine learning techniques to find near-optimal solutions at 
affordable cost
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Problem parameters Solution

Optimization 
Algorithm



Recent Interests From ML Community
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NIPS 2014

ICML 2018

NIPS 2017

A recent survey



Optimization Problems are Ubiquitous in Wireless 
Networks
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Optimization 
Algorithm

Input
• CSI
• QoS requirement
• Resource constraints
• etc

Output
• Resource allocation
• Detection results
• Estimates
• etc

Challenges
• Large problem size
• Non-convexity
• Real-time execution
• Uncertainty in parameters
• etc



An attempt in wireless networks

• WMMSE is a classic algorithm, good performance but slow
• To speed up, use multi-layer perceptron (MLP) to approximate the output 

of WMMSE [Sun18TSP]
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In theory, it works

• If 10 users, T=20 and K=10, we need 400 layers of neural network and 
each layer contains 40000 neurons.
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In practice, unreasonably effective

• A 3-layer neural network with [200,80,80] neurons in each 
layer achieves 97% sum rate compared to training labels
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The problem is solved
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Limitation – Poor Scalability

• Performance deteriorates dramatically when the network size 
becomes large.
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Other Limitations of “End-to-end” Learning

• Huge amounts of samples
– 20,000 ~ 100,000,000 samples
– Optimal labels are difficult to generate

• Cannot outperform labels
– Performance limited by the (sub-optimal) algorithm to generate 

samples

• Difficulty in constrained problems
– Neural networks are unaware of constraints

• Weak generalization
– Output dimension of neural networks must be fixed
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Another approach: Unsupervised Learning

• Consider sum rate maximization

• Use a neural network to learn the mapping form channel 
matrix to power

• The empirical loss function is

– N is the number of samples 
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Supervised vs. Unsupervised

• Supervised
– Need a traditional algorithm to generate labels
– MSE loss is often used as loss function
– Easy to train

• Unsupervised
– Only channel data is needed (without labels)
– The objective function of optimization is used as the function of neural 

network
– Hard to train
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This Talk

• To improve from “end-to-end” learning
– Which model to use? MLP? CNN?
– What to learn?

1. Learn to optimize with graph neural networks
– To exploit network structure

2. Learn optimization policy of a specific algorithm
– To exploit algorithm structure
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Learn to optimize with graph neural networks 
-- exploit network topology
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Why MLP is not good enough?

• We flatten the input into vectors before we feed it into the 
neural network, thus structure information is lost.
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Why MLP is not good enough?

• For example, “structure information” in image processing 
means the nearby pixels in an image are meaningful
– But the following two inputs are equivalent for MLP
– Most of the efforts are spent on discovering the structure
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CNN for image processing

• To capture neighborhood information, CNN is proposed for 
image processing and achieves significant success.
– It is able to exploit the shift-invariance, local connectivity, and 

compositionality of image data.
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Spatial Convolution for Wireless Communication

30

• Spatial convolution [Cui19JSAC] leverages the geometry of users’ 
locations: nearby users cause the strongest interference. 



Drawbacks of Spatial Convolution
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• CNN is designed for Euclidean data
– Only geolocation can be used as the input, not CSI, distance, or large-

scale fading, leading to bad performance when fading exists.

– Can not directly be applied for weighted sum rate maximization.

– Can not utilize the topology of the links.



Structure Information for Networks

• Network topology
– The topology can be naturally modelled as a graph
– The network topology can be exploited if we use neural networks on 

graph
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Graph Neural Networks

• Like MLP or CNNs, GNNs have layer-wise structures
– For each layer in CNN, a 2D convolution is applied
– For each layer in GCN, a graph convolution is applied
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CNN GCN



Applications of Graph Neural Networks
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Recommendation Chemistry

Point clouds Graph problems 



Key Design Steps of GNNs

• In each layer, each node aggregates the information from its 
neighbors
– denotes the feature vector for node v in k-th NN layer
– denotes the set containing all neighbors of u
– An aggregation function to aggregate features from neighbors
– A combination function to combine the feature of neighbors
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Proposed IGCNet

• Interference Graph Convolutional Networks (IGCNet)

– Code available: https://github.com/yshenaw/Globecom2019
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Motivation of IGCNet

• Compared with existing works in wireless communications
– It utilizes network topology
– It utilizes various kinds of info, e.g., CSI, large-scale fading, distance
– It achieves stable performance with varying network sizes

• Compared with existing works of GNNs
– Existing works of GNN can not deal with edge features, e.g., GCN 

[Kipf17ICLR], GIN [Xu19ICLR], structure2Vec [Dai16ICML], 
– or too complicated and slow, e.g., NRI [Kipf18ICML], GAT 

[Shang18arxiv]
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Simulations

• Different methods
– IGCNet: Proposed method
– WMMSE: The most popular optimization-based method [Shi11TSP]
– MLP: use MLP to approximate WMMSE [Sun18TSP]
– DPC: use CNN to approximate WMMSE [Lee18CL]
– PCNet: MLP with unsupervised training [Liang18arxiv]
– Baseline: Activate pairs with largest channel gains, the simplest method 

and ignoring the interference

– Note: we omit methods that can only handle geolocation or distance 
inputs [Cui19JSAC][Lee19arxiv]
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Simulations – Scalability 

• Maintaining the performance when the network size grows
– The decision is made locally at each node, less impact from the scale
– K: number of users
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Simulations – Robustness 

• Robustness to imperfect CSI  
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Simulations – Computation Efficiency

• Fast computation
– WMMSE involves many iterations, and each iteration is
– The total complexity of neural networks is 
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Benefits of IGCNet

• Maintaining the performance when the network size grows
– Scalable

• Able to handle non-Euclidean features
– Incorporate CSI and handle weighted objective functions

• Robust to missing data
– Robust to CSI uncertainty

• Fast computation
– Real-time execution

• Few training samples without labels
– Easy to implement

42



LORM: Learn to optimize with few samples
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Learning for Mixed Integer Nonlinear Program

• Mixed Integer Nonlinear Programming (MINLP) Problems

– NP-hard because of the combinatorial variables
– Both continuous and discrete variables

• Many resource allocation problems are MINLP
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Integer variables Continuous variables

Cost function

Resource constraints



Typical MINLP Resource Management Problems
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• Power Minimization in Cloud RANs
– Y. Shi, J. Zhang, and K. B. Letaief, “Group 

sparse beamforming for green Cloud-RAN,” 
IEEE Trans. Wireless Commun., vol. 13, no. 5, 
pp. 2809-2823, May 2014.

• Computation off-loading in MEC
– Y. Mao, J. Zhang, and K. B. Letaief, “Dynamic 

computation offloading for mobile-edge 
computing with energy harvesting devices,” 
IEEE J. Sel. Areas Commun., vol. 34, pp. 3590–
3605, Dec. 2016.

• User Association in HetNets
– Q. Ye, B. Rong, Y. Chen, M. Al-Shalash, C. 

Caramanis, and J. G. Andrews, “User 
association for load balancing in 
heterogeneous cellular networks,” IEEE Trans. 
Wireless Commun., vol. 12, pp. 2706–2716, Jun. 
2013. 



Basic Algorithmic Approaches

• Global optimization algorithms
– exponential time complexity
– only work for very small problems

• Heuristic algorithms
– Examples: greedy algorithm for user selection or sub-optimal algorithm 

like zero-forcing
– hard to design good ones
– non-negligible gap to the optimal solution
– difficult to meet real-time requirement
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Different ways to “learn to optimize”

• End-to-end-learning
– Directly learn the input-output 

mapping

– Needs large model, many samples
– Different to handle constraints
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Input Output

Optimization 
Algorithm

• Optimization policy learning
– Learn the optimal policy in a 

specific algorithm

– Exploits algorithm structure, 
requires few samples

– Capable to handle constraints



Branch-and-Bound

• A global optimization algorithm for MINLP

• Three policies:
– Node selection policy: select a node in binary search tree
– Variable selection policy: select a variable to branch
– Prune policy: whether to expand two children or not (time is saved if not 

expand)
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Branch-and-Bound
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[Conforti, et al., 2014]



Learn to Prune

• Prune policies
– Prune by bound: the lower bound is worse than best integer solution
– Prune by infeasibility: the relaxed problem is infeasible
– Prune by integrality: the relaxed problem has an integer solution

• Most of the time spent on checking non-optimal nodes

• Insight:We want a good enough solution rather than 
optimality guarantee
– Learning Pruning Policy - Classification
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Learn to Prune
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Imitation Learning

• Imitation learning to learn optimization policy
– Imitation learning mimics an optimal policy
– In learning the pruning policy, the optimal policy only preserves nodes 

containing the optimal solution

• Vs supervised learning
– Iteratively collect new data and training – better generalization

• Vs reinforcement learning
– Learn directly from the optimal policy rather than indirectly from the 

reward – lower sample complexity
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Imitation Learning

• Mimic an optimal behavior

53sermanet.github.io/imitation/



Simulation Results – Better Performance
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• GSBF: State-of-art   
• RMINLP: Heuristic method
• Branch-and-Bound
• LORM: Proposed method

– 50 training samples
– Near optimal solution

Network power minimization in C-RANs



Simulation Results – Computation Speedup
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• Use only 50 problem instances – easy for training
• 70x speedup to the branch-and-bound.
• 2x speedup to the state-of-the-art method.



Simulation Results – Generalization

56

The Gap to the Optimal Objective Value



Advantages of LORM

• Near-optimal performance with few training samples
– By learning the optimization policy via imitation learning

• It outperforms the non-optimal labels
– Obtaining a better solution by pruning fewer nodes

• It guarantees feasibility of constraints
– Retain algorithm structure

• It generalizes to different system configurations, and is able to 
scale up to larger problem sizes
– The input and output dimensions of the pruning policy are invariant to 

problem sizes
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Conclusions
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Conclusions

• Learn to optimize with network topology
– Graph neural network (GNN) based approach
– Scalable to large network sizes
– Unsupervised (no need for labelling)

• Learn optimization policies
– Able to handle general MINLP problems
– Supervised (few labelled samples)
– Able to outperform labels
– Constraint guarantee
– Good generalization
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Conclusions

• Great potentials of “learn to optimize” for wireless
– Higher computational efficiency
– Avoid hand-crafted algorithm design
– Close-to-optimal performance

• Key takeaways
– End-to-end learning is not efficient
– Do not directly apply MLP or CNN
– Exploit structures

• Network structure (IGCNet)
• Algorithm structure (LORM)
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One Picture to Recall

• A big universe of problems
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One Slide to Take Away

1. Figure out what problems can be solved via L2O
2. Find effective “simple” models to solve them

– Few samples
– Easy to train
– High computational efficiency
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Learn to Optimize (L2O)

Learn with 
Network Topology

Learn 
Optimization 

Policy



References on “learn to optimize”

• B. Yoshua, L. Andrea, and A. Prouvost, “Machine learning for combinatorial
optimization: a methodological tourd’horizon,” arXiv preprint arXiv:1811.06128,
2018.

• M.-F. Balcan, T. Dick, T. Sandholm, and E. Vitercik, “Learning to branch,” in Proc. Int.
Conf. Mach. Learning, vol. 80, pp. 344–353, Jul. 2018.

• J. Song, R. Lanka, A. Zhao, Y. Yue, and M. Ono, “Learning to search via self-imitation
with application to risk-aware planning,” in Proc. Adv. Neural Inform. Process. Syst.
Workshop, Dec. 2017.

• H. He, H. Daume III, and J. M. Eisner, “Learning to search in branch and bound
algorithms,” in Proc.Adv. Neural Inform. Process. Syst., pp. 3293–3301, Dec. 2014.
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References (ML in Wireless)

• H. Sun, X. Chen, Q. Shi, M. Hong, X. Fu, and N. D. Sidiropoulos, “Learning to
optimize: Training deep neural networks for interference management,” IEEE Trans.
Signal Process., vol. 66, pp. 5438 – 5453, Oct. 2018.

• W. Lee, M. Kim, and D.-H. Cho, “Deep power control: Transmit power control
scheme based on convolutional neural network,” IEEE Commun. Lett., vol. 22, pp.
1276–1279,Apr. 2018.

• F. Liang, C. Shen, W. Yu, and F. Wu, “Towards optimal power control via ensembling
deep neural networks,” arXiv preprint arXiv:1807.10025, 2018.

• W. Cui, K. Shen, and W. Yu, “Spatial Deep Learning for Wireless Scheduling”, IEEE
Journal on Selected Areas in Communications, 2019.

• H. Lee, S. H. Lee, T. Q. S. Quek, “Deep Learning for Distributed Optimization:
Applications to Wireless Resource Management”, IEEE Journal on Selected Areas in
Communications, 2019.

• M. Lee, G. Yu, and G. Y. Li, “Graph embedding based wireless link scheduling with few
training samples,”arXivpreprintarXiv:1906.02871, 2019.
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References on Graph Neural Networks

• Survey
– Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and P. S. Yu, “A comprehensive survey on graph neural

networks,” arXiv preprint arXiv:1901.00596, 2019.
– K. Xu, W. Hu, J. Leskovec, and S. Jegelka, “How powerful are graph neural networks?,” Proc. Int. Conf.

Learning Representation, May 2019.

• GNNs
– T. N. Kipf and M. Welling, “Semi-supervised classification with graph convolutional networks,” Proc.

Int. Conf. Learning Representation,Apr. 2017.
– P. Veličković, G. Cucurull, A. Casanova, etc “Graph Attention Networks,” Proc. Int. Conf. Learning

Representation,Apr. 2018.

• Applications
– R. Ying, R. He, K. Chen, P. Eksombatchai, W. L. Hamilton, and J. Leskovec, “Graph convolutional neural

networks for web-scale recommender systems,” in Proc. ACM Int. Conf. Knowl. Discovery Data
Mining, pp. 974–983, ACM, Aug. 2018.

– Z. Li, Q. Chen, and V. Koltun, “Combinatorial optimization with graph convolutional networks and
guided tree search,” in Proc.Adv. Neural Inform. Process. Syst., pp. 539–548, Dec. 2018.

– G. Li, M. Müller, A. Thabet, and B. Ghanem, “Can GCNs Go as Deep as CNNs?” in Proc. Int. Conf.
Comput.Vision, Oct. 2019.
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References (Our Results)

• Y. Shen, Y. Shi, J. Zhang, and K. B. Letaief, “LORA: Learning to optimize for resource
allocation in wireless networks with few training samples,” submitted.

• Y. Shen, Y. Shi, J. Zhang, and K. B. Letaief, “Transfer learning for mixed-integer
resource allocation problems in wireless networks,” in Proc. IEEE Int. Conf. Commun.
(ICC), Shanghai, China, May 2019.

• Y. Shen, Y. Shi, J. Zhang, and K. B. Letaief, “Scalable network adaption for green
Cloud-RANs: An imitation learning approach,” in Proc. IEEE Global Conf. Signal and
Inf. Process. (GlobalSIP),Anaheim, CA, Nov. 2018.

• Y. Shen, Y. Shi, J. Zhang, and K. B. Letaief, “A Graph Neural Network Approach for
Scalable Wireless Power Control,” IEEE GLOBECOM Workshop, Dec. 2019.
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• For more details
http://www.eie.polyu.edu.hk/~jeiezhang/
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Thank you!


