Deep Learning for Wireless Networks

-- Which Model to Use?
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Interested in 5G?

Aggregate Beamformer

* Sparse and Low-Rank Optimization for Dense
Wi ireless Networks

— Tutorial at IEEE GLOBECOM 2017
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* Tractable Analysis of Large-scale Multi-antenna o

Wireless Networks via Stochastic Geometry
— Tutorial at WiOpt 2018
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* Hybrid Beamforming for 5G Millimeter Wave
Systems

— Tutorial at IEEE GLOBECOM 2018
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Edge Al

Mobile Edge Federated

Data Computing Learning

* Y.Mao, C.You, J. Zhang, K. Huang, and K. B. Letaief,“A survey on mobile edge computing: The
communication perspective,” IEEE Commun. Surveys Tuts., vol. 19, no. 4, pp. 2322-2358, 4th
Quart. 2017.

* G.Zhuy,D.Liy,Y. Du, C.You, J. Zhang, and K. Huang, “Towards an intelligent edge:Wireless
communication meets machine learning,” submitted to IEEE Communications Magazine.

* J.Zhang, and K. B. Letaief, “Mobile Edge Intelligence and Computing for the Internet of
Vehicles,” submitted to Proc. IEEE.
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Big Data Analytics — Cache Management

Cache is limited = What to cache?

> Y.YuW.Wang, ). Zhang, and K. B. Letaief, “LRC: Dependency-aware
cache management in data analytics clusters,” in Proc. [EEE
INFOCOM 201 7. (Acceptance Rate: 20.93%)
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Cache is shared resource - How to fairly share

cache among users?
ﬁ i > Y.Yu,W.Wang, ). Zhang, Q.Weng, and K. B. Letaief, “OpusS: Fair and

efficient cache sharing for in-memory data analytics,” in ICDCS
2018. (Acceptance Rate: 20%)

Backend storage (HDFS, S3, etc. )

Distributed caches — How to balance the load?

»  Y.Yu,R.Huang,W.Wang, J. Zhang, and K. B. Letaief,“SP-Cache:
Load-balanced, Redundancy-free Cluster Caching with Selective
Partition,” in SC 2018. (Acceptance Rate: 19%)

> Y.Yu,W.Wang, ). Zhang, and K. B. Letaief, “LACS: Load-aware cache

sharing with isolation guarantee,” ICDCS 2019. (Acceptance Rate:
19.6%)
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Outline

Deep learning for wireless communications

The unreasonable effectiveness of “learn to optimize”

|GCNet — Learning with network topology

LORM — Learning optimization policy

Takeaway messages
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Successes of Deep Learning
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ML Arxiv Papers per Year
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Deep Learning: Alchemy or Science!?
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Deep Learning in Wireless Communications

Deep Learning for Wireless Physical Layer:
Opportunities and Challenges Nov 2017

Tianqi Wang!, Chao-Kai Wen*, Hanqing Wang", Feifei Gao®, Tao Jiang', Shi Jin"*

IEEE TRANSACTIONS ON COGNITIVE COMMUNICATIONS AND NETWORKING, VOL. 3, NO. 4, DECEMBER 2017

An Introduction to Deep Learning Dec 2017
for the Physical Layer

Timothy O’Shea™ . Senior Member, IEEE, and Jakob Hoydis. Member, IEEE

The Roadmap to 6G:
Al Empowered Wireless Networks

Khaled B. Letaief, Wei Chen, Yuanming Shi, Jun Zhang, and Ying-Jun Angela Zhang

Aug 2019

Wireless Networks Design in the Era of Deep

Learning: Model-Based, Al-Based, or Both? To appear
Alessio Zappone, Senior Member, IEEE, Marco Di Renzo, Senior Member, IEEE. Mérouane Debbah, Fellow,
{EEE

(Invited Paper)

MODEL-DRIVEN DEEP LEARNING FOR
PHYSICAL LAYER COMMUNICATIONS To appear

Hengtao He, Shi Jin. Chao-Kai Wen, Feifei Gao. Geoffrey Ye Li. and Zongben Xu
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When can deep learning help!?

* When it is difficult to obtain good models
— Channel estimation in mmWave systems

— Traffic prediction, user mobility

* When there is a lack of design methodology, but abundant
data

— Channel coding with feedback

— Joint source-channel coding

* When conventional methods work, but too complex

— Learn to optimize for resource management

The focus of this talk
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Unreasonable effectiveness of “learn to optimize”

Q@(ameter Pz

Optimizer Optimize%
error signa
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Supervised Learning with Neural Networks

minimize £(f(©, X))
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input layer
hidden layer 1 hidden layer 2

g" is the output of k-th layer
Wk b*the learned parameters

Relu(:) = max(-,0)

k-th layer’s output
g" = Relu(W"g" " + b"),
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Learning to Optimize (L20)

* Use machine learning techniques to find near-optimal solutions at

affordable cost
Optimization
Algorithm

Problem parameters Solution
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output layer
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input layer
hidden layer 1 hidden layer 2
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Recent Interests From ML Community

Learning to Search in Branch-and-Bound Algorithms*

NIPS 2014
He He Hal Daumé III Jason Eisner
Department of Computer Science Department of Computer Science
University of Maryland Johns Hopkins University
College Park, MD 20740 Baltimore, MD 21218
{hhe, hal}@cs.umd.edu jasonfes. jhu.edu

Learning Combinatorial Optimization Algorithms over Graphs

NIPS 2017

Hanjun Dait*, Elias B. Khalil %, Yuyu Zhang?, Bistra Dilkina’, Le Song'®
t College of Computing, Georgia Institute of Technology
§ Ant Financial
{hanjun.dai, elias.khalil, yuyu.zhang, bdilkina, Isong } @cc.gatech.edu

Learning to Branch ICML 2018

Maria-Florina Balcan! Travis Dick! Tuomas Sandholm! Ellen Vitercik !

Machine Learning for Combinatorial Optimization:
a Methodological Tour d'Horizon™ A recent survey

Yoshua Bengio®?, Andrea Lodi'®, and Antoine Prouvost!*
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Optimization Problems are Ubiquitous in Wireless

Networks

Optimization

Algorithm
Input Output
 (CSI * Resource allocation
* QoS requirement e Detection results
* Resource constraints * Estimates
e etc * etc

Challenges

* Large problem size

* Non-convexity

* Real-time execution

* Uncertainty in parameters
* etc
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An attempt in wireless networks

max i arlog | 1+ |hkk|2pk
----- PK > iz Ihij?pj + o

k=1

st. 0<pr L Puxx, VE=1,2,...,K,

WMMSE is a classic algorithm, good performance but slow

To speed up, use multi-layer perceptron (MLP) to approximate the output

of WMMSE [Sun | 8TSP]
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In theory, it works

Theorem 2 Suppose that WMMSE is randomly initialized with ('02)2 < Fos. Zfil v(h)? > Vinin, and
it is executed for I' iterations. Define the following set of ‘admissible’ channel realizations
K
H:= {h | Hpin < lhjkl < Hpnax, Vi, k, Z”(h')f > Vminth}-
i=1
Given ¢ > 0, there exists a neural network with h € RE” and +° € RE as input and NET (h,v°) € RX

as output, with the following number of layers

y 1 1 1 1
2 , > oo ~
O (T log (max (K,],,,ax,H,,,M, o Ho Pmin)) + T'log (())

and the following number of RelL.Us and binary units

1 1 ’ 1
’ H|1|i||1 ])min)> i TKZ log (E))1

max max |(v(h)!)? — NET(h,v°);| < e (15)
hetd i

Q|+~

0] (T2 K?log ( max (K, ) S ——

such that the relation below holds true

If 10 users, T=20 and K=10, we need 400 layers of neural network and
each layer contains 40000 neurons.
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In practice, unreasonably effective

* A 3-layer neural network with [200,80,80] neurons in each
layer achieves 97% sum rate compared to training labels

Empirical CDF
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The problem is solved
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Limitation — Poor Scalability

* Performance deteriorates dramatically when the network size

becomes large.

# of users (lq

average sum-rate (bit/sec.)

DNN WMMSE DNN/WMMSE

10
20

30

2.770 2.817 98.33%
3.363 3.654 92.04%
3.498 4.150 84.29%
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Other Limitations of “End-to-end” Learning

Huge amounts of samples
— 20,000 ~ 100,000,000 samples
— Optimal labels are difficult to generate

Cannot outperform labels

— Performance limited by the (sub-optimal) algorithm to generate
samples

Difficulty in constrained problems

— Neural networks are unaware of constraints

Weak generalization

— Output dimension of neural networks must be fixed

POLYTECHNIC UNIVERSITY
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Another approach: Unsupervised Learning

e Consider sum rate maximization
K
. Pk |*pr
maximize wg logs [ 14
p ]; ( zi#k ‘hki|2pz’ + O']%

subject to 0 < pr < Phpax, VK,

* Use a neural network to learn the mapping form channel
matrix to power p = fnn(H, w)

* The empirical loss function is

N K
L Pk |? i (Hjyw ;) g
minimize — E E wy, 1o 1+
P ot 52 ( D ier; | i faw (Hjj, ;)i + 0

— N is the number of samples
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Supervised vs. Unsupervised

* Supervised
— Need a traditional algorithm to generate labels

— MSE loss is often used as loss function
— Easy to train

* Unsupervised

— Only channel data is needed (without labels)

— The objective function of optimization is used as the function of neural
network

— Hard to train

Qab THE HONG KONG
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This Talk

* To improve from “end-to-end” learning
— Which model to use? MLP? CNN?
— What to learn!?

|. Learn to optimize with graph neural networks

— To exploit network structure

2. Learn optimization policy of a specific algorithm

— To exploit algorithm structure

Qob THE HONG KONG
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Learn to optimize with graph neural networks
-- exploit network topology

Inputt T .. Output

7 4
L Rell | = /" ReLU
- " " =
L -
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Why MLP is not good enough!?

* We flatten the input into vectors before we feed it into the
neural network, thus structure information is lost.

hyy| g
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Why MLP is not good enough!?

* For example,“structure information” in image processing
means the nearby pixels in an image are meaningful
— But the following two inputs are equivalent for MLP

— Most of the efforts are spent on discovering the structure

Cat with shuffled pixels

Q THE HONG KONG
POLYTECHNIC UNIVERSITY 28
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CNN for image processing

* To capture neighborhood information, CNN is proposed for
image processing and achieves significant success.

— It is able to exploit the shift-invariance, local connectivity, and
compositionality of image data.

Feature maps

Convolutions Subsampling Convolutions Subsampling Fully connected

/N THE HONG KONG
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Spatial Convolution for Wireless Communication

* Spatial convolution [Cuil 9JSAC] leverages the geometry of users’
locations: nearby users cause the strongest interference.

Transmitter Density Grid

'v\ . \\O 13
\‘ \ o o\\/) ‘ X \5 _ ‘\,\ / / :
()/;\ :/{/;,'O\\\. EE ;

2|1
Original Links Layout Layout with Discretized Cells 1
Receiver Density Grid

1 2

i
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Drawbacks of Spatial Convolution

* CNN is designed for Euclidean data

— Only geolocation can be used as the input, not CSI, distance, or large-
scale fading, leading to bad performance when fading exists.

— Can not directly be applied for weighted sum rate maximization.

— Can not utilize the topology of the links.

b "
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Structure Information for Networks

* Network topology
— The topology can be naturally modelled as a graph

— The network topology can be exploited if we use neural networks on
graph
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Graph Neural Networks

* Like MLP or CNNs, GNNs have layer-wise structures
— For each layer in CNN, a 2D convolution is applied

— For each layer in GCN, a graph convolution is applied

CNN GCN

graph convolution

/ dro% graph convolution

Convolution Pooling Convolution il \ / Q/L
/ ’
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Applications of Graph Neural Networks

Point clouds Graph problems

THE HONG KONG
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Key Design Steps of GNNs

* In each layer, each node aggregates the information from its
neighbors
— BF € R™ denotes the feature vector for node v in k-th NN layer
— N (u) denotes the set containing all neighbors of u
— An aggregation function to aggregate features from neighbors

— A combination function to combine the feature of neighbors

B € R™*

a1l = AGGREGATE* ({8 : uw € N(v)})
Bk — COMBINE"(8F, aft1)

v

Bk ¢ R™*

POLYTECHNIC UNIVERSITY
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Proposed |IGCNet

* Interference Graph Convolutional Networks (IGCNet)

&
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AGGREGATE COMBINE
— Code available: https://github.com/yshenaw/Globecom?2019
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Motivation of IGCNet

* Compared with existing works in wireless communications
— It utilizes network topology
— It utilizes various kinds of info, e.g., CSI, large-scale fading, distance

— It achieves stable performance with varying network sizes

* Compared with existing works of GNNs

— Existing works of GNN can not deal with edge features, e.g., GCN
[Kipfl 7ICLR], GIN [Xul9ICLR], structure2Vec [Dail 6ICML],

— or too complicated and slow, e.g., NRI [KipfI8ICML], GAT
[Shang|8arxiv]

POLYTECHNIC UNIVERSITY
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Simulations

Different methods

|GCNet: Proposed method

WMMSE:The most popular optimization-based method [Shil | TSP]
MLP: use MLP to approximate WMMSE [Sun|8TSP]

DPC: use CNN to approximate VWMMSE [Lee | 8CL]

PCNet: MLP with unsupervised training [Liang|8arxiv]

Baseline:Activate pairs with largest channel gains, the simplest method
and ignoring the interference

Note: we omit methods that can only handle geolocation or distance
inputs [Cuil 9)SAC][Leel9arxiv]

THE HONG KONG
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Simulations — Scalability

* Maintaining the performance when the network size grows
— The decision is made locally at each node, less impact from the scale

— K:number of users

TABLE 1l
AVERAGE SUM RATE UNDER EACH SETTING. THE RESULTS ARE
NORMALIZED BY THE SUM RATE ACHIEVED BY WMMSE.

IGCNet | MLP | PCNet | DPC | Baseline
K =10 | 102.6% | 98.2% | 101.4% | 95.1% | 89.1%
K =20 )| 102.7% | 92.3% | 90.2% | 83.1% | 86.6%
K =30 | 102.4% | 85.3% | 87.6% | 79.3% | 84.4%

Q THE HONG KONG
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Simulations — Robustness

* Robustness to imperfect CSI

&

THE HONG KONG

o
@
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Relative Performance
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Missing CSI Ratio

Fig. 5. The relative performance versus the missing ratio of CSI.
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Simulations — Computation Efficiency

* Fast computation
— WMMSE involves many iterations, and each iteration is O(K?)

— The total complexity of neural networks is O(K?)

TABLE 1V
AVERAGE RUNNING TIME FOR THE ALGORITHMS UNDER EACH SETTING
(IN MILLISECONDS).

K=10| K=20 | K =30
IGCNet 0.14ms 0.27ms 0.48ms
WMMSE | 9.31ms 24.1ms 31.4ms

Q THE HONG KONG
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Benefits of IGCNet

* Maintaining the performance when the network size grows

— Scalable

« Able to handle non-Euclidean features

— Incorporate CSl and handle weighted objective functions

* Robust to missing data

— Robust to CSI uncertainty

* Fast computation

— Real-time execution

* Few training samples without labels

&

— Easy to implement

THE HONG KONG
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LORM: Learn to optimize with few samples

THE HONG KONG
POLYTECHNIC UNIVERSITY
TR T RS

43



Learning for Mixed Integer Nonlinear Program

* Mixed Integer Nonlinear Programming (MINLP) Problems

minimize  f(a,w)

w,a
Q(a,w) <0

subject to

a; € N,w; € C.

Integer variables Continuous variables

— NP-hard because of the combinatorial variables

— Both continuous and discrete variables

* Many resource allocation problems are MINLP

POLYTECHNIC UNIVERSITY
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Typical MINLP Resource Management Problems

e User Association in HetNets

— Q.Ye, B.Rong,Y. Chen, M. Al-Shalash, C.
Caramanis, and J. G.Andrews, “User
association for load balancing in
heterogeneous cellular networks,” IEEE Trans.
Wireless Commun., vol. 12, pp. 27062716, Jun.
2013.

m - Baﬁbm%m -:ipol w i

e  Power Minimization in Cloud RANs

YEgm— sronﬁ:&mk — Y.Shi, ). Zhang, and K. B. Letaief, “Group

: / // | \\\ sparse beamforming for green Cloud-RAN,’
h @4 0 8 § 0. A IEEE Trans.Wireless Commun., vol. | 3, no. 5,
¥ Uren 0 &£ WY pp. 2809-2823, May 2014.

e Computation off-loading in MEC

wu; & % -: — Y.Mao, . Zhang, and K. B. Letaief, “Dynamic
X computation offloading for mobile-edge

&/ Mu; computing with energy harvesting devices,’
EH-BS . IEEE |. Sel. Areas Commun., vol. 34, pp. 3590—

3605, Dec.2016.
Qb THE HONG KONG
%
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Basic Algorithmic Approaches

* Global optimization algorithms

— exponential time complexity
— only work for very small problems

* Heuristic algorithms

&

— Examples: greedy algorithm for user selection or sub-optimal algorithm

like zero-forcing
— hard to design good ones
— non-negligible gap to the optimal solution

— difficult to meet real-time requirement

THE HONG KONG
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Different ways to “learn to optimize”

* End-to-end-learning .

— Directly learn the input-output — Learn the optimal policy in a

mapping specific algorithm
Branch-and-Bound

6
Q ®
deed C @

o9 o000

input layer
hidden layer 1 hidden layer 2

— Needs large model, many samples — Exploits algorithm structure,

— Different to handle constraints requires few samples

— Capable to handle constraints

POLYTECHNIC UNIVERSITY
TR T A
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Branch-and-Bound

* A global optimization algorithm for MINLP

Branch-and-Bound

he
O | O
S 000 & @
o0 0000

* Three policies:
— Node selection policy: select a node in binary search tree
— Variable selection policy: select a variable to branch

— Prune policy: whether to expand two children or not (time is saved if not
expand)

Q THE HONG KONG
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Branch-and-Bound

Branch-and-Bound Algorithm

0. Initialize

max 5.5z1+2.1z9 L = {Np}, z == —o0, (z*,y*) =0
o i 9 "
1+ wp <2 1. Terminate?
8r1+ 229 < 17 0 : :
1 =, = If £ = 0. the solution (x*,y") is optimal.
1, L9 P 0
Ty, To integer. 2. Select node
Choose a node N; in £ and delete it from L.
3. Bound
Solve LP,. If it is infeasible, go to Step 1. Else, let (z%, 3') be an
1 :~1:3'£20§ s optimal solution of LP; and z; its objective value.
<1 ) 4. Prune
v =1,y =3 T =2 2;=05 If 2 < 2, go to Step 1.
g=1IL5 = 1245 If («*,y") is feasible to MILP, set z := z;, (%, y") := (2%, 3') and go to
Prune by integrality x5 <0 zo > 1 S'[-Ep L
Otherwise:
r; = 2.125, 29 = 0 .
P Infeasible
& = T80 5. Branch
Prune by bound Prune by infeasibili P 115
From LP;, construct k > 2 linear programs LP;,, ..., LP;, with smaller

feasible regions whose union does not contain (r?, 4*). but contains all
the solutions of LP; with = € Z". Add the corresponding new nodes
Niyy...,N;, to £ and go to Step 1.

[Conforti, et al., 2014]
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Learn to Prune

* Prune policies

— Prune by bound: the lower bound is worse than best integer solution
— Prune by infeasibility: the relaxed problem is infeasible

— Prune by integrality: the relaxed problem has an integer solution

* Most of the time spent on checking non-optimal nodes

* Insight:We want a good enough solution rather than
optimality guarantee

— Learning Pruning Policy - Classification

anb THE HONG KONG
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Imitation Learning

* Imitation learning to learn optimization policy
— Imitation learning mimics an optimal policy

— In learning the pruning policy, the optimal policy only preserves nodes
containing the optimal solution

* Vs supervised learning

— Iteratively collect new data and training — better generalization

* Vs reinforcement learning

— Learn directly from the optimal policy rather than indirectly from the
reward — lower sample complexity

Foundations and Trends® in Robotics

Vol. 7, No. 1-2 (2018) 1-179

© 2018 T. Osa, J. Pajarinen, G. Neumann,
J. A. Bagnell, P. Abbeel and J. Peters

DOI: 10.1561 /2300000053

An Algorithmic Perspective on
Imitation Learning

POLYTECHNIC UNIVERSITY 52
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Imitation Learning

* Mimic an optimal behavior

Observation Simulation Real Robot

End-to-end Self-Supervision

(no human supervision)
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Simulation Results — Better Performance

Network power minimization in C-RANs
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 GSBF: State-of-art

* RMINLP: Heuristic method
 Branch-and-Bound

* LORM:Proposed method

— 50 training samples
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— Near optimal solution
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Simulation Results — Computation Speedup

Setting Branch-and-Bound | LORM | GSBF | RMINLP
L =10, K =13, TSINR =1 91.76s 0.892s | 2.562s 5.264s
L =10, K =15, TSINR =14 96.40s 1.157s | 3.680s 8.136s
L =10, K =17, TSINR =1 142.0s 2920s | 5.474s 12.64s

* Use only 50 problem instances — easy for training

* 70x speedup to the branch-and-bound.
e 2xspeedup to the state-of-the-art method.

THE HONG KONG
POLYTECHNIC UNIVERSITY
TSI TR 5

55



Simulation Results — Generalization

The Gap to the Optimal Obijective Value

Setting R HORM RMINLP | GSBF
(full training) | (train on L = 6, K = 9, TSINR = 0)
L=10, K =7 TSINR =14 1.87% 4.39% 7.94% 12.9%
L=10, K =9, TSINR =14 1.73% 2.97% 8.71% 8.04%
L =10, K =11,TSINR =4 1.30% 1.72% 9.44% 5.36%
E=10, K =13, TSINR =4 1.41% 1.41% 7.27% 4.45%
L =10, K =15TSINR =4 0.70% 1.48% 7.94% 3.36%
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Advantages of LORM

* Near-optimal performance with few training samples
— By learning the optimization policy via imitation learning
* It outperforms the non-optimal labels

— Obtaining a better solution by pruning fewer nodes

* It guarantees feasibility of constraints

— Retain algorithm structure

* It generalizes to different system configurations, and is able to
scale up to larger problem sizes

— The input and output dimensions of the pruning policy are invariant to
problem sizes
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Conclusions
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Conclusions

* Learn to optimize with network topology
— Graph neural network (GNN) based approach
— Scalable to large network sizes

— Unsupervised (no need for labelling)

* Learn optimization policies

&

— Able to handle general MINLP problems
— Supervised (few labelled samples)

— Able to outperform labels

— Constraint guarantee

— Good generalization
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Conclusions

* Great potentials of “learn to optimize” for wireless
— Higher computational efficiency
— Avoid hand-crafted algorithm design

— Close-to-optimal performance

* Key takeaways

— End-to-end learning is not efficient
— Do not directly apply MLP or CNN
— Exploit structures

* Network structure (IGCNet)
* Algorithm structure (LORM)
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One Picture to Recall

* A big universe of problems

recognizable

decidable

EXPSPACE
EXPTIME
PSPACE=NPSPACE
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One Slide to Take Away

Learn to Optimize (L20)

Learn with
Network Topology
Learn
Optimization
Policy

|. Figure out what problems can be solved via L2O
2. Find effective “simple” models to solve them

— Few samples
— Easy to train
— High computational efficiency
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Thank youl

*  For more details

&

http://www.eie.polyu.edu.hk/~jeiezhang/
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